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This note is in response to some recent confusion about definitions of longitudinal emittance,
and its relationship to momentum spread, bunch length, etc. In what follows, the derivations
of relationships between the rms momentum spread of a presumed Gaussian bunch distribution
and the 95% longitudinal emittance are provided. The relationships are valid for a distribution
where the emittance is much smaller than the RF bucket area, and therefore effects due to the
nonlinearities of the RF focusing and large tails of the particle distribution are ignored.

We begin with the first integral of the equation of motion for particles circulating the accelerator,
namely Eq. (2.45) in Edwards and Syphers [1]:

∆E2 +
2v2EseV

ηωrfτc2
(cos φ + φ sinφs) = constant , (1)

where ∆E and φ are the energy difference and phase from the ideal particle of charge e, v is the
speed of the particle, c is the speed of light, Es is the synchronous energy, φs the synchronous
phase, V the peak RF voltage, ωrf the RF angular frequency, τ the transit time, and η the slip
factor. This equation describes the trajectory of a particle in longitudinal phase space. For phases
near the synchronous phase, φ = φs + ∆φ, with ∆φ � 1, the above can be re-written as

∆E2 +
2β2EseV

2πhη
[cos φs cos ∆φ− sinφs sin∆φ + (φs + ∆φ) sinφs] = constant, (2)

where we use the fact that ωrfτ = 2πh, with h the harmonic number of the RF system, and
β ≡ v/c. Noting that sin∆φ ≈ ∆φ and cos ∆φ ≈ 1− 1

2∆φ2, Eq. 2 reduces to

∆E2 − β2EseV cos φs

2πhη
∆φ2 = constant. (3)

Finally, we convert to ∆E-∆t phase space, where ∆t = ∆φ/ωrf = ∆φ/(2πhf0), with f0 the
revolution frequency. Since energy and time are canonical variables, the area (emittance) in phase
space bounded by a single particle’s trajectory is an adiabatic invariant. The resulting phase space
trajectory of a particle is thus given by

∆E2 − β2EseV cos φs

2πhη
(2πhf0)2 ∆t2 = constant. (4)
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The minus sign above is fine, since for stable motion the choice of cos φs is made to ensure that the
product η cos φs is negative. Thus, Eq. 4 is the equation of an ellipse. To evaluate the constant,
we look at the specific trajectory within which lies 95% of the particles in the bunch. It is easy to
see that if we scale the axes until the trajectories are circular, and note that the distribution has
been assumed to be Gaussian (and stationary in time), then the radius a which contains 95% of
the particles will be given by

1
2πσ2

∫ 2π

0

∫ a

0
e−r2/2σ2

rdrdθ =
∫ a

0
e−r2/2σ2 rdr

σ2
=

∫ a2/2σ2

0
e−udu = 1− e−a2/2σ2

= 0.95 . (5)

=⇒ a2/2σ2 = − ln(0.05) =⇒ a ≈
√

6 σ

Thus, the equation of the 95% contour is

∆E2 − β2EseV cos φs

2πhη
(2πhf0)2 ∆t2 = 6σ2

E (6)

where σE is the rms of the energy distribution about the synchronous energy. Collecting terms into
a more familiar form,

∆E2

6σ2
E

− β2EseV cos φs

12πhησ2
E

(2πhf0)2 ∆t2 = 1 . (7)

The area S of this ellipse is called the 95% longitudinal emittance and has units of eV-sec:

S =
3

hf0

√
−2πhηE3

s

β2eV cos φs

(
σE

Es

)2

(8)

=
3

hf0

√
−2πhηE3

sβ2

eV cos φs

(
σp

p

)2

(9)

where σp is the rms of the momentum distribution about the central momentum p, and we have
used the fact that ∆p/p = (1/β2)(∆E/Es).

Given a specific 95% longitudinal emittance and the necessary RF system parameters, etc., the
momentum spread of the beam is given by

σp

p
=

(
− heV cos φsS

2f2
0

18πηE3
sβ2

)1/4

. (10)

So, we have the situation depicted in the figure below. The area inside the separatrix is called
the bucket area and, for a stationary (non-accelerating) bucket, is given by

A =
8C

πhc

√
eV Es

2πh|η|
(11)

where C is the circumference of the accelerator.

For typical Main Injector parameters at 120 GeV,

A =
8 · 3.3× 103m

π(588)(3× 108m/sec)

√
(3.5× 106eV) (120× 109eV)

2π(588)(1/20)2
(12)

= 10 eV · sec. (13)
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Figure 1: Stationary bucket with beam emittance indicated.

Likewise, for a longitudinal emittance of S = 1 eV·sec (� A) the momentum spread is

σp

p
=

(
(588)(3.5× 106eV)(1eV · sec)2(91kHz)2

18π(1/20)2(120× 109eV)3

)1/4

(14)

= 5× 10−4 . (15)

We see that an rms relative momentum spread of 10−3 in the Main Injector at 120 GeV would
correspond to a 95% longitudinal emittance of about 4 eV·sec.

There is often confusion concerning the 95% longitudinal emittance and the 95% momentum
spread or energy spread. If the energy distribution is Gaussian, then ±2σE will contain ∼95% of
the particles. If one follows a 2σE particle in phase space and finds the corresponding 2σt edge in
the parameter ∆t, then the area bounded by this ellipse is 4πσEσt. While ±2σE contains 95% of
the particles, and ±2σt also contains 95% of the particles, the curve in phase space which bounds
the area 4πσEσt does NOT contain 95% of the particles. In fact, it contains only 86.5% of the
particles. The 95% emittance is actually 50% larger than this number. That is,

S = 6πσEσt = 6πβcσpσt .
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